Geometric realizations of curvature models by manifolds with constant scalar curvature

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Realizations of Curvature Models by Manifolds with Constant Scalar Curvature

We show any Riemannian curvature model can be geometrically realized by a manifold with constant scalar curvature. We also show that any pseudo-Hermitian curvature model, para-Hermitian curvature model, hyperpseudo-Hermitian curvature model, or hyper-para-Hermitian curvature model can be realized by a manifold with constant scalar and ⋆-scalar curvature.

متن کامل

Geometric Realizations of Hermitian Curvature Models

We show that a Hermitian algebraic curvature model satisfies the Gray identity if and only if it is geometrically realizable by a Hermitian manifold. Furthermore, such a curvature model can in fact be realized by a Hermitian manifold of constant scalar curvature and constant ⋆-scalar curvature which satisfies the Kaehler condition at the point in question.

متن کامل

Gluing Constructions for Asymptotically Hyperbolic Manifolds with Constant Scalar Curvature

We show that asymptotically hyperbolic initial data satisfying smallness conditions in dimensions n ≥ 3, or fast decay conditions in n ≥ 5, or a genericity condition in n ≥ 9, can be deformed, by a deformation which is supported arbitrarily far in the asymptotic region, to ones which are exactly Kottler (“SchwarzschildadS”) in the asymptotic region.

متن کامل

Hypersurfaces with Constant Scalar Curvature

Let M be a complete two-dimensional surface immersed into the three-dimensional Euclidean space. Then a classical theorem of Hilbert says that when the curvature of M is a non-zero constant, M must be the sphere. On the other hand, when the curvature of M is zero, a theorem of Har tman-Nirenberg [4] says that M must be a plane or a cylinder. These two theorems complete the classification of com...

متن کامل

K-stability of constant scalar curvature Kähler manifolds

We show that a polarised manifold with a constant scalar curvature Kähler metric and discrete automorphisms is K-stable. This refines the K-semistability proved by S. K. Donaldson.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Geometry and its Applications

سال: 2009

ISSN: 0926-2245

DOI: 10.1016/j.difgeo.2009.05.002